

PRODUKTDATENBLATT

Aimants bruts en Néodyme-Fer-Bore (NdFeB)

Barre magnétique en NdFeB, jusqu'à 80°C

Numéro d'article	Qualité	D mm	H mm	Force d'adhérence* N	Poids g	Température °C	Magnétisation
RM002NdSb99ng10	N35	2 +0.1/-0.1	4 +0.1/-0.1	1	0,1	80	axiale
RM002NdSb99ng29	N45	2 +0.1/-0.1	4 +0.1/-0.1	1,6	0,1	80	axiale
RM002NdSb99ng30	N45	2 +0.1/-0.1	8 +0.1/-0.1	1,7	0,2	80	axiale
RM003NdSb99ng23	N48	3 +0.1/-0.1	6 +0.1/-0.1	2,5	0,3	80	axiale
RM003NdSb99ng44	N45	3 +0.1/-0.1	10 +0.1/-0.1	3,9	0,5	80	axiale
RM003NdSb99ng43	N45	3 +0.1/-0.1	6 +0.1/-0.1	3,6	0,3	80	axiale
MNASm4x5	N35	4 +0.1/-0.1	5 ^{+0.1} / _{-0.1}	3,5	0,5	80	axiale
RM004NdSb99ng41	N45	4 +0.1/-0.1	5 +0.1/-0.1	6	0,5	80	axiale
RM004NdSb99ng42	N45	4 +0.1/-0.1	10 +0.1/-0.1	6,9	0,9	80	axiale
RM004NdSb99ng43	N45	4 +0.1/-0.1	15 ^{+0.1} / _{-0.1}	7	1,4	80	axiale
RM004NdSb99ng44	N45	4 +0.1/-0.1	20 +0.1/-0.1	7,1	1,9	80	axiale
RM005NdSb99ng83	N45	5 ^{+0.1} / _{-0.1}	10 +0.1/-0.1	10	1,5	80	axiale
RM005NdSb99ng84	N45	5 ^{+0.1} / _{-0.1}	15 ^{+0.1} / _{-0.1}	11	2,2	80	axiale
RM005NdSb99ng75	N45	5 ^{+0.1} / _{-0.1}	20 +0.1/-0.1	11	2,9	80	axiale
RM006NdSb99ng56	N45	6 ^{+0.1} / _{-0.1}	10 +0.1/-0.1	14	2,1	80	axiale
RM006NdSb99ng57	N45	6 +0.1/-0.1	15 ^{+0.1} / _{-0.1}	14	3,1	80	axiale
RM006NdSb99ng58	N45	6 +0.1/-0.1	25 ^{+0.1} / _{-0.1}	15	5,3	80	axiale
RM008NdSb99ng48	N45	8 +0.1/-0.1	10 +0.1/-0.1	26	3,8	80	axiale
RM008NdSb99ng49	N45	8 +0.1/-0.1	20 +0.1/-0.1	27	7,5	80	axiale
RM008NdSb99ng50	N45	8 +0.1/-0.1	30 +0.1/-0.1	28	11	80	axiale
RM010NdSb99ng99	N45	10 +0.1/-0.1	20 +0.1/-0.1	44	12	80	axiale

PRODUKTDATENBLATT

Numéro d'article	Qualité	D mm	H mm	Force d'adhérence* N	Poids g	Température °C	Magnétisation
RM010NdSb99ng9A	N45	10 +0.1/-0.1	30 +0.1/-0.1	45	18	80	axiale
RM010NdSb99ng9B	N45	10 +0.1/-0.1	40 +0.1/-0.1	46	24	80	axiale

NOTE SUR LE PRODUIT :

Les aimants NdFeB peuvent être fabriqués dans presque toutes les dimensions souhaitées et sans frais d'outillage. Même les petites quantités sont donc possibles. Pour les protéger de la corrosion, ils sont revêtus de nickel-cuivre-nickel (NiCuNi). La température indiquée se réfère à la température maximale d'utilisation du matériau. La résistance peut toutefois être réduite en raison de la géométrie.

Comme alternative au standard, nous proposons également des solutions individuelles :

- " dimensions spécifiques au client
- " sens d'aimantation modifié
- " autres types d'aimantation
- " autres qualités jusqu'à N54
- " température d'utilisation élevée jusqu'à 220°C
- " formes spécifiques au client (p. ex.p. ex. cube, cône, sphère, segments)
- " autres revêtements (p. ex. galvanisé, doré, revêtu d'époxy)

Magnétisé par la hauteur (H)

* Les forces ont été déterminées à température ambiante sur une plaque polie en acier (S235JR selon DIN 10 025) d'une épaisseur de 10 mm (1kg~10N). Un écart allant jusqu'à -10% par rapport à la valeur indiquée est possible dans des cas exceptionnels. En général, la valeur est dépassée. Le type d'application (situation de montage, températures, contre-ancrage, etc.) influence parfois énormément les forces. Les valeurs indiquées sont données à titre indicatif. Demandez conseil à nos experts.

F. +49 7422 9519-22